

NanoWatch: A Real-Time IoT-Integrated Nanoparticle Pollution Monitoring System

Vir Gogia, The Cathedral and John Connon School, India

Research Question

What are the limitations of current nanoparticle pollution monitoring methods, and how can an IoT-integrated static light scattering device overcome these challenges to enable real-time, affordable, and accurate environmental monitoring?

Methodology

Developed a portable, cost-efficient static light scattering (SLS) device using a 532 nm laser, photomultiplier tube (PMT), collimating optics, and an IoT-based ESP8266 module for real-time data transmission. The device completely enables in-situ analysis of pollution levels in any environment via the analysis of nanoparticles.

- Implemented two sampling systems:
 - **Air:** Compact bubbling chamber (ethanol-water, 70:30 v/v) enabling rapid (2–5 min) nanoparticle capture from ambient air.
 - **Water:** Batch-based direct sampling method simulating industrial wastewater scenarios.
- Conducted calibration and validation using AgNPs, TiO₂, and ZnO nanoparticles (10–100 ppm).
- Automated angular data collection using Arduino-controlled stepper motor for comprehensive multi-angle analysis.
- Developed a cloud-based dashboard displaying pollution trends and automated threshold-based alerts.

Data Analysis & Results

- Successfully detected nanoparticle pollution levels, correlating scattering intensity to nanoparticle concentration and environmental contamination.
- Validated results through comparative Transmission Electron Microscopy (TEM), confirming accurate nanoparticle sizing (30–60 nm).
- IoT integration enabled real-time monitoring of pollution trends, providing graphical visualization of concentration spikes over multiple sampling periods.
- Demonstrated device reliability and reproducibility across air and water samples.

Interpretation, Environmental Impact & Future Directions

- NanoWatch provides an accessible, cost-effective alternative to expensive, lab-based nanoparticle monitoring methods, significantly improving pollution tracking capabilities.
- The IoT-enabled real-time monitoring allows proactive intervention, protecting ecosystems and public health through early-warning alerts and regulatory compliance.
- Future enhancements will automate sampling for continuous monitoring, improve sensitivity for ultrafine nanoparticles (<10 nm), integrate AI-driven predictive analytics, and deploy multi-sensor networks for comprehensive environmental assessments.